New Frontiers for Topological Semimetals

Barry Bradlyn
Princeton Center for Theoretical Science/UIUC
UIUC - 5 November 2017

Collaborators

Jennifer Cano (Princeton)

Claudia Felser
(Max Planck Institute Chem. Phys of Solids)

Mois Aroyo (EHU)

Zhijun Wang (Princeton)

Bob Cava
(Princeton)

Luis Elcoro (EHU)

Andrei Bernevig (Princeton)

Outline

- Review - crystal symmetries, Weyl semimetals
- Symmetry protected topological metals - beyond Weyl and Dirac fermions
- Outlook - topological band theory

Outline

- Review - crystal symmetries, Weyl semimetals
- Symmetry protected topological metals - beyond Weyl and Dirac fermions
- Outlook - topological band theory

Review - Non-

 symmorphic Symmetries

 symmorphic Symmetries}

- Structure of crystal symmetry group (space group) G

1. Bravais lattice translations $\sim \mathbb{Z}^{3}$
2. Point group $\bar{G} \equiv G / \mathbb{Z}^{3}$

- Rotation \& reflection symmetries of a crystal
- 32 in 3D
- How many ways can we put \bar{G} and \mathbb{Z}^{3} together (group extension problem)?

Review - Non-
 symmorphic Symmetries

- General element of a crystalline symmetry group: $\mathcal{G}=\{R \mid \vec{d}\}$
- $\left\{R_{1} \mid \overrightarrow{d_{1}}\right\}\left\{R_{2} \mid \overrightarrow{d_{2}}\right\}=\left\{R_{1} R_{2} \mid \overrightarrow{d_{1}}+R_{1} \overrightarrow{d_{2}}\right\}$
- All space groups contain $\left\{E \mid \vec{t}_{i}\right\}$ where \vec{t}_{i} are Bravais lattice vectors
- Symmorphic group (73) - Extension splits: Every element can be written as $\mathcal{G}=\left\{E \mid n_{i} \overrightarrow{t_{i}}\right\}\{R \mid \overrightarrow{0}\}$
- Otherwise, non-symmorphic: elements with fractional lattice translations (157)

Review - Nonsymmorphic Symmetries

- Example:

Non-symmorphic glide mirror $\left\{m_{y} \left\lvert\, \frac{1}{2} \mathbf{t}\right.\right\}$

- This is the frieze group p11g

Review - $\mathbf{k} \cdot \mathbf{p}$ Hamiltonains

- Recall Bloch's theorem: $H\left(\mathbf{r}+\mathbf{t}_{a}\right)=H(\mathbf{r}) \Longrightarrow H(\mathbf{r}) \psi_{n}(\mathbf{k}, \mathbf{r})=\epsilon_{n}(\mathbf{k}) \psi_{n}(\mathbf{k}, \mathbf{r})$
- $\psi_{n}(\mathbf{k}, \mathbf{r})=e^{i \mathbf{k} \cdot \mathbf{r}} u_{n \mathbf{k}}$ with $u_{n \mathbf{k}}(\mathbf{r})_{\text {periodic }}$

- Assume the solutions are known at some high-symmetry point \mathbf{k}_{0} with symmetry group $G^{\mathbf{k}_{0}}$

1. Solutions fall into irreducible representations Δ of $G^{\mathbf{k}_{0}}$
2. We can expand $\psi(\mathbf{k}, \mathbf{r})=\sum_{n} c_{n}(\mathbf{k})\left[e^{i\left(\mathbf{k}-\mathbf{k}_{0}\right) \cdot \mathbf{r}} \psi_{n}\left(\mathbf{k}_{0}, \mathbf{r}\right)\right]$

What is a Weyl Semimetal?

Two-band crossing in 3 dimensions:

$$
H(\vec{k})=d_{i}(\vec{k}) \sigma_{i} ; d_{i}\left(k_{x}, k_{y}, k_{z}\right)=0, \quad i=1,2,3
$$

3 functions, 3 variables - solution set is 0-dimensional (points);
Berry curvature:

$$
\begin{aligned}
& H(k)=\vec{k} \cdot \vec{\sigma} \\
& H(k)|\vec{k}\rangle=\mu|\vec{k}\rangle \\
& a_{i}=-i\langle\vec{k}| \frac{\partial}{\partial k_{i}}|\vec{k}\rangle \\
& \vec{\Omega}=\nabla \times \vec{a}=\frac{\vec{k}}{2 k^{3}} \\
& \frac{1}{2 \pi} \oint d \vec{S} \cdot \vec{\Omega}=1
\end{aligned}
$$

Monopole of Berry Curvature

What is a Weyl Semimetal

- Weyl nodes cannot be removed by small perturbations
- Gapped only through pairwise annihilation
- Nielsen-Ninomiya: Weyl points come in pairs of opposite chirality
- Must break either time-reversal or inversion symmetries; otherwise, can only get Dirac semimetals
- What are the observable consequences?

Fermi Arcs

Wan, Turner, Vishwanath (2011)

Fermi Arcs

Fermi Arcs

Wan, Turner, Vishwanath (2011)

Chiral Anomaly in Condensed Matter

Electric field pumps charge between Weyl points:

$$
\Delta N_{R}-\Delta N_{L} \propto E \cdot B
$$

Manifestation of Adler-Bell-Jackiw anomaly
Cond. mat. perspective: Nielsen + Ninomiya, Vafek + Vishwanath

Experimental Observation - TaAs, Na3Bi

Hasan, Ong, IOP group

Outline

- Review - crystal symmetries, Weyl semimetals
- Symmetry protected topological metals - beyond Weyl and Dirac fermions

Outlook - topological band theory

Crystal Symmetry Protection

- More exotic fermions are allowed in crystalline systems
- New degeneracies protected by (non-symmorphic) crystal symmetries
- We focus on high symmetry points in the BZ
- Demand TR symmetry, allow for SOC
- Strategy - construct irreps of these symmetry groups, and the
 most general Hamiltonian consistent with each

Review - $\mathbf{k} \cdot \mathbf{p}$ Hamiltonains

- Recall Bloch's theorem: $H\left(\mathbf{r}+\mathbf{t}_{a}\right)=H(\mathbf{r}) \Longrightarrow H(\mathbf{r}) \psi_{n}(\mathbf{k}, \mathbf{r})=\epsilon_{n}(\mathbf{k}) \psi_{n}(\mathbf{k}, \mathbf{r})$
- $\psi_{n}(\mathbf{k}, \mathbf{r})=e^{i \mathbf{k} \cdot \mathbf{r}} u_{n \mathbf{k}}$ with $u_{n \mathbf{k}}(\mathbf{r})_{\text {periodic }}$

- Assume the solutions are known at some high-symmetry point \mathbf{k}_{0} with symmetry group $G^{\mathbf{k}_{0}}$

1. Solutions fall into irreducible representations Δ of $G^{\mathbf{k}_{0}}$
2. We can expand $\psi(\mathbf{k}, \mathbf{r})=\sum_{n} c_{n}(\mathbf{k})\left[e^{i\left(\mathbf{k}-\mathbf{k}_{0}\right) \cdot \mathbf{r}} \psi_{n}\left(\mathbf{k}_{0}, \mathbf{r}\right)\right]$

Review - $\mathbf{k} \cdot \mathbf{p}$ Hamiltonains

- Symmetry contrains the Bloch Hamiltonian

$$
\Delta(\mathcal{G}) H(\mathbf{k}) \Delta(\mathcal{G})^{-1}=H(\mathcal{G} \mathbf{k})
$$

- Schur's Lemma: $H\left(\mathbf{k}_{0}\right)=\bigoplus_{\text {irreps }} E_{\Delta} \mathbb{1}_{\Delta}$
- For $\delta \mathbf{k}=\mathbf{k}-\mathbf{k}_{0}$ small, $H(\mathbf{k}) \approx \bigoplus_{\text {irreps }} H_{\Delta}(\mathbf{k})$

k_{0}

"Spin-1 Weyl" Fermions

- Space groups 199 and 214 at the P point $\mathbf{k}_{0}=(\pi, \pi, \pi)$

"Spin-1 Weyl" Fermions

- Space groups 199 and 214 at the P point $\mathbf{k}_{0}=(\pi, \pi, \pi)$
- Symmetries: $\left\{C_{3,111}^{-1} \mid 101\right\} \quad\left\{C_{2 x} \left\lvert\, \frac{1}{2} \frac{1}{2} 0\right.\right\}$
- We seek representations Δ compatible with

$$
\Delta(\{E \mid \mathbf{d}\})=e^{-i \mathbf{k}_{0} \cdot \mathbf{d}}
$$

- Spin-1/2 particles - 2π rotation must give overall minus
- 3-dimensional irrep:

$$
\Delta\left(\left\{C_{31}^{-1} \mid 101\right\}\right)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad \Delta\left(\left\{C_{2 x} \left\lvert\, \frac{\overline{1}}{2} \frac{1}{2} 0\right.\right\}\right)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

"Spin-1 Weyl" Fermions

- Linearized Hamiltonian

$$
H=\left(\begin{array}{ccc}
0 & a \delta k_{x} & a^{*} \delta k_{y} \\
a^{*} \delta k_{x} & 0 & a \delta k_{z} \\
a \delta k_{y} & a^{*} \delta k_{z} & 0
\end{array}\right)
$$

- Topological properties: $a=i|a|$

$$
H \rightarrow|a| \delta \mathbf{k} \cdot \mathbf{L}
$$

- Nontrivial Berry curvature $\pm 2,0$
- (c.f. $H=\mathbf{B} \cdot \mathbf{L}$)

Consequences - Surface Fermi Arcs

- Numerical check: tight-binding model for SG 214
- 4 atoms/unit cell, 3 p-orbitals per atom, 2NN hoppings
- Slab geometry, compute surface
 spectral function

$$
A\left(k_{1}, k_{2}\right)=-\frac{1}{\pi} \operatorname{Im}\left[\operatorname{tr}_{\text {orb }}\left(\frac{1}{E+i \delta-H}\right)_{00}\right]
$$

Consequences - Surface Fermi Arcs

Consequences - Surface Fermi Arcs

Consequences - Landau Levels

- Introduce magnetic field $k_{x, y} \rightarrow \Pi_{x, y} \equiv k_{x, y}+e A_{x, y}$
- Landau level creation/annihilation operators

$$
a=\frac{1}{\sqrt{2 B}}\left(\Pi_{x}-i \Pi_{y}\right), \quad a^{\dagger}=\frac{1}{\sqrt{2 B}}\left(\Pi_{x}+i \Pi_{y}\right)
$$

- Linear Hamiltonian

$$
H\left(B, k_{z}\right)=\sqrt{\frac{B}{2}}\left(\begin{array}{ccc}
0 & e^{i \phi}\left(a+a^{\dagger}\right) & i e^{-i \phi}\left(a-a^{\dagger}\right) \\
e^{-i \phi}\left(a+a^{\dagger}\right) & 0 & e^{i \phi} \bar{k}_{z} \\
i e^{i \phi}\left(a-a^{\dagger}\right) & e^{-i \phi} \bar{k}_{z} & 0
\end{array}\right)
$$

- Exactly solvable when $\phi=\pi / 2$

Consequences - Landau Levels (Exact)

Consequences - Landau Levels (Higher order)

Material Candidates

Material Candidates

La3PbI3

La3PbI3

3-fold Degeneracy with Line Nodes

- Space group 220 at the P point
- Symmetries $\left\{C_{3,111} \mid 000\right\}$
$\left\{C_{2 y} \left\lvert\, 0 \frac{1}{2} \frac{1}{2}\right.\right\} \quad\left\{I C_{4 x}^{-1} \left\lvert\, \frac{1}{2} 11\right.\right\}$
- Linearized Hamiltonian

$$
H=a\left(\begin{array}{ccc}
0 & \delta k_{x} & \delta k_{y} \\
\delta k_{x} & 0 & \delta k_{z} \\
\delta k_{y} & \delta k_{z} & 0
\end{array}\right)
$$

- Spin-1 Weyl at a phase transition - protected line nodes

"Spin-1 Dirac" Fermions

- Space groups 206 and 230 at the P point
- Same symmetries as the spin-1 Weyl, but now also respects $I \mathcal{T}$
- Two superimposed copies of a spin-1 Weyl
- No protected surface states (a la Dirac nodes at high symmetry points)

"Double Spin-1"

- Space groups 198, 212, 213
- Primitive cubic version of 199 - TR pairs two spin-1 Weyls
- No mirrors - these both have the same monopole charge
- c.f. Chang et al., arXiv: 1706.04600

Eightfold Degeneracy Dirac Lines

- SG 130 and 135 at the A point
- Only one allowed representation of the symmetry group - 8 -fold degeneracy required
- Can appear as an isolated feature at the Fermi level

- Mirror symmetry along BZ edges -> fourfold Dirac line nodes
- Zeeman splitting / Strain splitting -> Dirac, Weyl, and line-node semimetals, strong/weak Tls

Full Classification: Surface/Line Degeneracies

Due to nonsymmorphicity, T C2 squares to -1

Bravais lattice	Lattice vectors	Reciprocal lattice vectors
Primitive cubic	$(a, 0,0),(0, a, 0),(0,0, a)$	$\frac{2 \pi}{a}(1,0,0), \frac{2 \pi}{a}(0,1,0), \frac{2 \pi}{a}(0,0,1)$

$$
\begin{array}{l|l|l|l|l}
\text { SG } & \mathrm{La} & k & \mathrm{~d} & \text { Generators } \\
\hline 198 & \mathrm{cP} & \mathrm{R} & 6 & \left\{C_{3,111}^{-} \mid 010\right\},\left\{C_{2 x} \left\lvert\, \frac{1}{2} \frac{3}{2} 0\right.\right\},\left\{C_{2 y} \left\lvert\, 0 \frac{3}{2} \frac{1}{2}\right.\right\} \\
199 & \mathrm{cI} & \mathrm{P} & 3 & \left\{C_{3,111}^{-} \mid 101\right\},\left\{C_{2 x} \left\lvert\, \frac{1}{2} \frac{1}{2} 0\right.\right\},\left\{C_{2 y} \left\lvert\, 0 \frac{1}{2} \frac{1}{2}\right.\right\} \\
205 & \mathrm{cP} & \mathrm{R} & 6 & \left\{C_{3,111}^{-} \mid 010\right\},\left\{C_{2 x} \left\lvert\, \frac{1}{2} \frac{3}{2} 0\right.\right\},\left\{C_{2 y} \left\lvert\, 0 \frac{3}{2} \frac{1}{2}\right.\right\},\{I \mid 000\} \\
206 & \mathrm{cI} & \mathrm{P} & 6 & \left\{C_{3,111}^{-} \mid 101\right\},\left\{C_{2 x} \left\lvert\, \frac{1}{2} \frac{1}{2} 0\right.\right\},\left\{C_{2 y} \left\lvert\, 0 \frac{1}{2} \frac{1}{2}\right.\right\} \\
212 & \mathrm{cP} & \mathrm{R} & 6 & \left\{C_{2 x} \left\lvert\, \frac{1}{2} \frac{1}{2} 0\right.\right\},\left\{C_{2 y} \left\lvert\, 0 \frac{1}{2} \frac{1}{2}\right.\right\},\left\{C_{3,111}^{-} \mid 000\right\},\left\{C_{2,1 \overline{1} \mid} \left\lvert\, \frac{1}{4} \frac{1}{4} \frac{1}{4}\right.\right\} \\
213 & \mathrm{cP} & \mathrm{R} & 6 & \left\{C_{2 x} \left\lvert\, \frac{1}{2} \frac{1}{2} 0\right.\right\},\left\{C_{2 y} \left\lvert\, 0 \frac{1}{2} \frac{1}{2}\right.\right\},\left\{C_{3,111}^{-} \mid 000\right\},\left\{C_{2,1 \overline{1} \mid} \left\lvert\, \frac{3}{4} \frac{3}{4} \frac{3}{4}\right.\right\} \\
214 & \mathrm{cI} & \mathrm{P} & 3 & \left\{C_{3,111}^{-} \mid 101\right\},\left\{C_{2 x} \left\lvert\, \frac{1}{2} \frac{1}{2} 0\right.\right\},\left\{C_{2 y} \left\lvert\, 0 \frac{1}{2} \frac{1}{2}\right.\right\} \\
220 & \mathrm{cI} & \mathrm{P} & 3 & \left\{C_{3, \overline{1} 1} \left\lvert\, 0 \frac{1}{2} \frac{1}{2}\right.\right\},\left\{C_{2 y} \left\lvert\, 0 \frac{1}{2} \frac{1}{2}\right.\right\},\left\{C_{2 x} \left\lvert\, \frac{3}{2} 0\right.\right\},\left\{I C_{4 x}^{-} \left\lvert\, \frac{1}{2} 11\right.\right\} \\
230 & \mathrm{cI} & \mathrm{P} & 6 & \left\{C_{3, \overline{1} 11} \left\lvert\, 0 \frac{1}{2} \frac{1}{2}\right.\right\},\left\{C_{2 y} \left\lvert\, 0 \frac{1}{2} \frac{1}{2}\right.\right\},\left\{C_{2 x} \left\lvert\, \frac{3}{2} \frac{3}{2} 0\right.\right\},\left\{I C_{4 x}^{-} \left\lvert\, \frac{1}{2} 11\right.\right\} \\
\hline 130 & \mathrm{tP} & \mathrm{~A} & 8 & \left\{C_{4 z} \mid 000\right\},\left\{\sigma_{\bar{x} y} \left\lvert\, 00 \frac{1}{2}\right.\right\},\left\{I \left\lvert\, \frac{1}{2} \frac{1}{2} \frac{1}{2}\right.\right\} \\
135 & \mathrm{tP} & \mathrm{~A} & 8 & \left\{C_{4 z} \left\lvert\, \frac{1}{2} \frac{1}{2} \frac{1}{2}\right.\right\},\left\{\sigma_{\bar{x} y} \left\lvert\, 00 \frac{1}{2}\right.\right\},\{I \mid 000\} \\
218 & \mathrm{cP} & \mathrm{R} & 8 & \left\{C_{2 x} \mid 001\right\},\left\{C_{2 y} \mid 000\right\},\left\{C_{3,111}^{-} \mid 001\right\},\left\{\sigma_{\bar{x} y} \left\lvert\, \frac{1}{2} \frac{1}{2} \frac{1}{2}\right.\right\} \\
220 & \mathrm{cI} & \mathrm{H} & 8 & \left\{C_{2 x} \left\lvert\, \frac{1}{2} \frac{1}{2} 0\right.\right\},\left\{C_{2 y} \left\lvert\, 0 \frac{1}{2} \frac{3}{2}\right.\right\},\left\{C_{3,111}^{-} \mid 001\right\},\left\{\sigma_{\bar{x} y} \left\lvert\, \frac{1}{2} \frac{1}{2} \frac{1}{2}\right.\right\} \\
222 & \mathrm{cP} & \mathrm{R} & 8 & \left\{C_{4 z}^{-} \mid 000\right\},\left\{C_{2 x} \mid 000\right\},\left\{C_{3,111}^{-} \mid 010\right\},\left\{I \left\lvert\, \frac{1}{2} \frac{1}{2} \frac{1}{2}\right.\right\} \\
223 & \mathrm{cP} & \mathrm{R} & 8 & \left\{C_{4 z}^{-} \frac{1}{2} \frac{1}{2} \frac{1}{2}\right\},\left\{C_{2 x} \mid 000\right\},\left\{C_{3,111}^{-} \mid 010\right\},\{I \mid 000\} \\
230 & \mathrm{cI} & \mathrm{H} & 8 & \left\{C_{4 z} \left\lvert\, 0 \frac{1}{2} 0\right.\right\},\left\{C_{2 y} \left\lvert\, 1 \frac{1}{2} \frac{1}{2}\right.\right\},\left\{C_{3,111} \mid 111\right\},\{I \mid 000\}
\end{array}
$$

For 8-fold see also Wieder et al., PRL 116, 186402 (2016)

Material Candidates

Outline

- Review - crystal symmetries, Weyl semimetals
- Symmetry protected topological metals - beyond Weyl and Dirac fermions
- Outlook - topological band theory

Band Connectivity

- Why are there so many bands?
- Momentum space perspective: Non-symmorphic symmetries force bands to stick together along high symmetry lines
- Ex: Glide Symmetry $g_{x}=\left\{m_{x} \left\lvert\, 00 \frac{1}{2}\right.\right\}, g_{x}^{2}=-e^{-i k_{z}}$

With time-reversal symmetry, bands must come in groups of 4

Review - $\mathbf{k} \cdot \mathbf{p}$ Hamiltonains

- Symmetry contrains the Bloch Hamiltonian

$$
\Delta(\mathcal{G}) H(\mathbf{k}) \Delta(\mathcal{G})^{-1}=H(\mathcal{G} \mathbf{k})
$$

- Schur's Lemma: $H\left(\mathbf{k}_{0}\right)=\bigoplus_{\text {irreps }} E_{\Delta} \mathbb{1}_{\Delta}$
- For $\delta \mathbf{k}=\mathbf{k}-\mathbf{k}_{0}$ small, $H(\mathbf{k}) \approx \bigoplus_{\text {irreps }} H_{\Delta}(\mathbf{k})$
- Local in momentum space -> Misses connectivity and topology

Bigger Picture

- Global band topology (and geometry!) determines a set of Wannier functions for each gapped band
- Topologically trivial -> these Wannier functions are smoothly deformable to atomic orbitals while preserving symmetries

Ex: Graphene
[Soluyanov \& Vanderbilt (2011)]

Bigger Picture

- By combining representation theory with band topology, we have applied this logic to all 230 space groups.
- Predictive classification of non-interacting TCls
- See next talk for more details

