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Outline
• Review - crystal symmetries, Weyl semimetals 

• Symmetry protected topological metals - beyond Weyl 
and Dirac fermions 

• Outlook - topological band theory 
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Review - Non-
symmorphic Symmetries

• Structure of crystal symmetry group (space group)  

1. Bravais lattice translations 

2. Point group 

• Rotation & reflection symmetries of a crystal 

• 32 in 3D 

• How many ways can we put        and          together 
(group extension problem)?    

⇠ Z3

Z3

Ḡ ⌘ G/Z3

G

Ḡ



Review - Non-
symmorphic Symmetries

• General element of a crystalline symmetry group: 

•   

•  All space groups contain                where       are Bravais 
lattice vectors 

• Symmorphic group (73) - Extension splits: Every 
element can be written as 

• Otherwise, non-symmorphic: elements with fractional 
lattice translations (157)

G = {R|~d}

G = {E|ni~ti}{R|~0}

{E|~ti} ~ti

{R1|~d1}{R2|~d2} = {R1R2|~d1 +R1
~d2}



Review - Non-
symmorphic Symmetries

• Example: 

• This is the frieze group p11g

t

{my|
1

2
t}Non-symmorphic glide mirror



Review -            Hamiltonains 

• Recall Bloch’s theorem: 

•                              with               periodic 

• Assume the solutions are known at some high-symmetry 
point       with symmetry group 

1. Solutions fall into irreducible representations       of    

2. We can expand

unk(r)

k0 Gk0

Gk0�

H(r+ ta) = H(r) =) H(r) n(k, r) = ✏n(k) n(k, r)

 n(k, r) = eik·runk

k · p



What is a Weyl Semimetal?to do with the fact that in 3 dimensions we can actually define a Chern

number for a Fermi surface. In 2 dimensions, only filled bands have integer

Chern numbers because we needed to integrate over a 2-d manifold to obtain

a Chern number. In 3 dimensions, Fermi surfaces define a 2-D manifold,

so the integral of the Berry curvature over the whole Fermi surface gives a

Chern number:

C1 =
1

2⇡

Z
FS

d⌦ij(@iaj(k)� @jai(k)) (540)

Where the integral is made over the Fermi surface and ai = �i
D
~k
��� @
@k

i

���~kE
is the Berry potential. The Chern number vanishes if there is no crossing

between the band whose Fermi surface we are looking at and any other

bands. The Chern number comes from the monopole that stands at the

band crossing. In the general case of the Hamiltonian (ki � Ki)Aij�j, we

have that the Chern number of the Fermi surface C1 = sign(Det(A)). Notice

that in the current case we are dealing with the Hamiltonian around an

arbitrary K degeneracy point. Therefore the stability of the Dirac node in

3 dimensions does not rely on any other symmetries besides the charge U(1)

symmetry that protects Chern numbers (the absence of c†c† terms). In a TR

invariant system, at �K, we have another nodal point.

In 3 dimensions, the degeneracy point can be imagined to be the source of

a monopole field. The Berry field strength of ~B(~k) = r~k ⇥ ~A(~k) can be used

to define a monopole density in ~k space ⇢ = r~k · ~B(~k). The monopole density

can only be nonzero at degeneracy points - at any other points the monopole
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Monopole of 
Berry Curvature

Two-band crossing in 3 dimensions: 

3 functions, 3 variables - solution set is 0-dimensional (points);  

Berry curvature:

3

hamiltonian basically real on the k
z

= 0 plane and allows Dirac nodes on the plane without the need to have a line
node. We can have a Weyl node, generically of Chern number equal to 1 - in the absence of any other symmetry.
Since we have no SOC, the spin degeneracy really means that we have a Chern number equal to 2 when the other
band is added. This shows that this node cant dissapear upon the introduction of infinitesimal SOC, thereby giving
a metallic phase.

Please find all groups and combinations which in the absence of SOC give rise to Dirac nodes on
special, 2D planes in the 3D BZ

With Spin-Orbit Coupling

When adding SOC, a chern number 2 Weyl crossing of any number of bands cannot completely dissapear. The
Weyls which were degenerate in the case of NOSOC will split, but two Weyl must remain even in the absence of
spin orbit coupling. Most importantly, the Weyls will stay at k

z

= 0 –PLEASE CHECK – which is not
explained by the Chern number argument but can be explained easily below

With spin, C2T is an antiunitary symmetry in the k
z

= 0 plane which still squares to unity. This fact is essential
for the existence of 2D Dirac nodes in the k

Z

= 0 plane - the weyl nodes in the 3-d space. SInce (C2T )2 = 1, and
since we dont have inversion and the bands are spin split, this symmetry makes the hamiltonian of two possible bands
crossing (in some basis) still real - which means two parameters two momenta, zero codimension, and protects singly
degenerate Dirac nodes in 2 D planes, which are the Weyls in 3D

Please find all groups and combinations which in the presence of SOC give rise to Dirac nodes on
special planes

H(~k) = d
i

(~k)�
i

; d
i

(k
x

, k
y

, k
z

) = 0, i = 1, 2, 3

~⌦ = r⇥ ~a =
~k

2k3

1

2⇡

I
d~S · ~⌦ = 1

c.f. Volovik



What is a Weyl 
Semimetal

• Weyl nodes  cannot be removed by small perturbations 

• Gapped only through pairwise annihilation 

• Nielsen-Ninomiya: Weyl points come in pairs of 
opposite chirality 

• Must break either time-reversal or inversion 
symmetries; otherwise, can only get Dirac semimetals 

• What are the observable consequences?



Fermi Arcs
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FIG. 6: Illustration of surface states arising from bulk Dirac
points. For simplicity, only a pair of Dirac points with oppo-
site chirality are shown. The imaginary cylinder in momen-
tum space has unit Chern number, due to the Berry monopole
at the Dirac point. Hence a surface state must arise, as shown
schematically in the same plot. When the Fermi energy is at
the Dirac point, a Fermi arc is present which connects the sur-
face momenta of the projected bulk Dirac points of opposite
chirality.

Fermi points. However, in the presence of a surface (say
the plane z = 0), new low energy states may be gener-
ated. We show that these will occur along a curve in the
surface Brillouin zone as is illustrated in Fig. 5. The end
points of this curve occur at the bulk Fermi point mo-
menta, projected onto the surface Brillouin Zone. Also,
the curve connects Dirac nodes with opposite monopole
charge. If more than one Dirac node projects to the same
surface momentum, the sum of the monopole charges
should be considered. This is argued by showing that
there must be Fermi arcs on the surface Brillouin zone
emanating from the projection (k0x, k0y) of the monopole
as argued below.

Origin of Surface States: We now prove that the band
topology associated with the Dirac point leads to sur-
face states. Construct a curve in the surface Brillouin
zone encircling the projection of the bulk Dirac point,
which is traversed counterclockwise as we vary the pa-
rameter � : 0 ! 2⇡; k

�

= (k
x

(�), k
y

(�)) (see Fig. 6).
We show that the energy ✏

�

of a surface state at momen-
tum k

�

crosses E = 0. Consider H(�, k
z

) = H(k
�

, k
z

),
the gapped Hamiltonian of the two dimensional subsys-
tem defined by this curve. The two periodic parameters
�, k

z

define the surface of a torus in momentum space
(see Fig. 6). The Chern number of this two dimensional
band structure is given by the Berry curvature integra-
tion: 1

2⇡

R
Fdk

z

d� which, by Stokes theorem, simply cor-
responds to the net monopole density enclosed within
the torus. This is obtained by summing the chiralities
of the enclosed Dirac nodes. Consider the case when the

net chirality is unity, corresponding to a single enclosed
Dirac node. Then, the two dimensional subsystem de-
fines a quantum Hall insulator with unit Chern number.
When defined on the half space z < 0, this corresponds to
putting the quantum Hall state on a cylinder, and hence
we expect a chiral edge state. Its energy ✏

�

spans the
band gap of the subsystem, as � is varied. Hence, this
surface state crosses zero energy somewhere on the sur-
face Brillouin zone k

�0 . Such a state can be obtained for
every curve enclosing the Dirac point. Thus, at zero en-
ergy, there is a Fermi line in the surface Brillouin zone,
that terminates at the Dirac point momenta (see Fig.
6). An arc beginning on a Dirac point of chirality c has
to terminate on a Dirac point of the opposite chirality.
Clearly, the net chirality of the Dirac points within the
(�, k

z

) torus was a key input in determining the number
of these states. If Dirac points of opposite chirality line
up along the k

z

direction, then there is a cancelation and
no surface states are expected.
For U = 1.5 eV, a Dirac node is found to occur

at the momentum (0.52, 0.52, 0.31)2⇡/a and equivalent
points (see Fig.3). They can be thought of as occur-
ing on the edges of a cube, with a pair of Dirac nodes
of opposite chirality occupying each edge, as, e.g., the
points (0.52, 0.52, 0.31)2⇡/a and (0.52, 0.52,�0.31)2⇡/a.
For the case of U = 1.5 eV, the sides of this cube have
the length 0.52(4⇡/a). Thus, the (111) and (110) sur-
faces would have surface states connecting the projected
Dirac points. If, on the other hand we consider the sur-
face orthogonal to the (001) direction, it would lead to
the Dirac points of opposite chirality being projected to
the same surface momentum, along the edges of the cube.
Thus, no protected states are expected for this surface.

Model Calculation: To verify these theoretical con-
siderations, we have constructed a tight binding model
which has features seen in our electronic structure cal-
culations for YIr2O7. We consider only t2g orbitals of Ir
atoms in the global coordinate system. Since Ir atoms
form tetrahedral network (see Fig. 2), each pair of
nearest neighboring atoms forms a corresponding ��like
bond whose hopping integral is denoted as t and other
two ⇡�like bonds whose hopping integrals are denoted
as t0. To simulate the appearance of the Dirac point it
is essential to include next–nearest neighbor interactions
between t2g orbitals which are denoted as t00. With the
parameters t = 0.2, t0 = 0.5t, t00 = �0.2t, the value of the
on–site spin–orbit coupling equal to 2.5t and the applied
on–site splitting between spin up and spin down states
equal to 0.1 referred to the local quantization axis which
simulates our non–collinear ’all–in/out’ configuration we
can model both the bulk Dirac metal state and its sur-
face. The calculated (110) surface band structure for the
slab of 128 atoms together with the sketch of the obtained
Fermi arcs is shown in Fig. 7. Notice that since the slab
calculation involves two surfaces, the corresponding sur-
face states and Fermi arcs for both surfaces are generated.

Wan, Turner, Vishwanath (2011)



Fermi ArcsDo not rely on any symmetry. 
Chiral edge states Symmetry-protected edge states

Mean-field superconductors
without any symmetry
are also distinguished by C.

C can be defined within
a mirror subspace (Teo,Fu,Kane)

Time-reversal symmetry, spin-orbit coupling
(Kane,Mele)

3D generalizations

Time-reversal symmetry, spin-orbit coupling
+ spatial symmetry (Fu)

Time-reversal symmetry, spin-orbit coupling
+ spatial symmetry (AA,Chen,Gilbert,BAB)

e.g., HgTe, Bismuth

e.g., SnTe, BiSb,CeBi 
(Hsieh,  Fu,  Suyang,  Nasser,  Hasan,  AA  …)

(BHK, Drozdov, 
Yazdani,  AA…)
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Z



Chiral Anomaly in Condensed Matter

k

Energy

// Be e
Apply 
E // B

Electric field pumps charge between Weyl points: 

ΔNR – ΔNL ∝ E⋅B 

Manifestation of Adler-Bell-Jackiw anomaly 
Cond. mat. perspective: Nielsen + Ninomiya, Vafek + Vishwanath

�k = E⌧



Experimental Observation 
- TaAs, Na3Bi

6

B

E
f
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E
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FIG. 8: Angular dependence of the axial current in Sample
J4 at 4.5 K inferred from measurements of R14,23 in tilted
B(✓,�). In Panel A, B lies in the x-y plane at an angle � to
x̂ (sketch in inset). The conductance enhancement ��xx at
fixed B is plotted against � for fields 3  B  7 T. The insets
show the polar representation of ��xx vs. �. In Panel B,
��xx is plotted versus ✓ for 3  B  7 T forB lying in the x-z
plane. As sketched in the inset, ✓ is the angle between B and
x̂. In Panels A (B), the axial current is peaked when � ! 0
(✓ ! 0) with an angular width that narrows significantly as
B increases. Panels C and D show the orientations of B and
E relative to the crystal axes in Panels A and B, respectively.
Adapted from Xiong et al. [27].

fields.
The large negative MR in Panels A and B suggests

a long relaxation time for the novel current. We esti-
mate the relaxation time ⌧v for internode scattering from
curves of the conductance G = 1/R35,26 as follows. At
low B, G increases rapidly as B2 consistent with Eq. 2.
We form the ratio ��/�0 = 3

4 (kF `B)
�4.(⌧v/⌧tr) (where

�0 is the Drude conductivity, `B is the magnetic lengthp
~/eB and ⌧tr the usual transport lifetime). Fitting

to the observed parabolic curve, we find that ⌧v/⌧tr =
40-60. The scattering rate relaxing the axial current is

anomalously low compared with the scattering rate 1/⌧tr
of the conventional states in zero B.

VII. ANGULAR WIDTH OF PLUME

A surprise to us is the acute sensitivity of the novel
current to misalignment at large B. We have exam-
ined how the conductivity derived from R14,23 decays
as B is tilted away from x̂ in either the x-y or the x-
z plane. Figure 8A displays the curves of ��xx(B,�) =
�xx(B,�) � �xx(B, 90�) vs. � as B is tilted in the x-y
plane at an angle � to x̂, with B fixed at values 3!7 T.
Figure 8B shows the same measurements but now with
B lying in the x-z plane at an angle ✓ to x̂. In both
cases, the low-field curves (B  2 T) are reasonably de-
scribed with cosp � (or cosp ✓) with p = 4 (not shown).
However, for B > 2 T, the angular widths narrow signif-
icantly. Hence, at large B, the axial current is observed
as a strongly collimated beam in the direction selected
by B and E as � or ✓ is varied.

To see what happens at larger B, we extended mea-
surements of R14,23 to B = 35 T. We observe a new fea-
ture at Hk ⇠ 23 T when B||ŷ. As B is tilted away from
ŷ (� ! 55�), the feature at Hk becomes better resolved
as a kink. The steep increase in ⇢xx above Hk suggests
an electronic instability at large B. However, as we de-
crease � below 45�, Hk(�) moves rapidly to above 35 T.
The negative MR curve at � = 0 remains una↵ected by
the instability up to 35 T (the small rising background is
from a weak Bz due to a slight misalignment).

To us, the unusual locking of the negative MR pattern
in Figs. 6A and 7B to E and B in weak B constitutes
strong evidence for the axial current. The experiment
confirms the B2 behavior in Eq. 2 and provides a mea-
surement of the long internode scattering lifetime. How-
ever, the width of the collimated beam in the direction
of B is much narrower than expected from the theory.

In addition to the results here, several groups have also
reported observing the chiral anomaly in other materials
(primarily TaAs and ZrTe5). The evidence is by and
large restricted to the appearance of negative longitudi-
nal MR often bracketed by large positive MR at lower
and higher B. A concern is that a negative, longitudinal
MR restricted to a narrow field interval is (by itself) a
rather slender reed to hang a weighty claim from. Fur-
ther tests, such as the demonstration of the field-steering
e↵ect, would appear to be necessary. Nonetheless, the
dramatic increase in experimental activity on a growing
list of candidate Weyl semimetals is an encouraging sign
for the field. We anticipate exciting experimental devel-
opments in the next few years.

[1] H. B. Nielsen and M. Ninomiya, “The Adler-Bell-Jackiw
Anomaly and Weyl Fermions in a Crystal,” Phys Lett B
130, 389-396 (1983).

[2] X. G. Wan, A. M. Turner, A. Vishwanath and S. Y.
Savrasov, “Topological semimetal and Fermi-arc surface
states in the electronic structure of pyrochlore iridates,”
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FIG. 2: Fermi arc surface states on the (001) surface of TaAs. a, ARPES spectra of the

band structure of TaAs. The square Brillouin zone and C4 rotation symmetry deep in the bulk

shows that the sample is cleaved on the (001) surface. The strong C4 violation by certain bands at

shallow binding energies is consistent with C4 screw axis symmetry broken by the (001) surface and

clearly shows that the C4 asymmetric states are surface states. These states consist of Fermi arcs

and are observed near the X̄ point, near the Ȳ point, near the midpoint of the X̄ point and the

�̄ point and near the midpoint of the Ȳ point and the �̄ point. b, High-resolution ARPES Fermi

surface mapping of the Fermi arc surface states near the midpoint of the X̄ point and the �̄ point.

We clearly observe two Fermi arcs. Since the arcs terminate at arbitrary points of the Brillouin

zone, they terminate at Weyl points. Since there are two arcs, the chiral charge of the Weyl points

is ±2. Both of these conclusions are in agreement with ab initio calculations. c, ARPES spectrum

along the �̄-X̄ high-symmetry direction, showing both the Fermi arc surface states near the X̄

point and the states near the midpoint of the X̄ point and the �̄ point.
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Outline
• Review - crystal symmetries, Weyl semimetals 

• Symmetry protected topological metals - beyond Weyl 
and Dirac fermions 

• Outlook - topological band theory 
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Crystal Symmetry 
Protection

• More exotic fermions are allowed 
in crystalline systems 

• New degeneracies protected by 
(non-symmorphic) crystal 
symmetries 

• We focus on high symmetry 
points in the BZ 

• Demand TR symmetry, allow for 
SOC 

• Strategy - construct irreps of 
these symmetry groups, and the 
most general Hamiltonian 
consistent with each
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Review -            Hamiltonains 

• Recall Bloch’s theorem: 

•                              with               periodic 

• Assume the solutions are known at some high-symmetry 
point       with symmetry group 

1. Solutions fall into irreducible representations       of    

2. We can expand

unk(r)

k0 Gk0

Gk0�

H(r+ ta) = H(r) =) H(r) n(k, r) = ✏n(k) n(k, r)

 n(k, r) = eik·runk

k · p



• Symmetry contrains the Bloch Hamiltonian  

• Schur’s Lemma:  

• For                        small, 

Local in momentum space -> Misses topology                                                

Review -            Hamiltonains k · p

�k = k� k0

�(G)H(k)�(G)�1 = H(Gk)

H(k) ⇡
M

irreps

H�(k)

H(k0) =
M

irreps

E�1�

k0

�1

�2

�3



• Space groups 199 and 214 at the P point
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“Spin-1 Weyl” Fermions
k0 = (⇡,⇡,⇡)



� H

P

k
x

ky

kz

F
⇤

�

“Spin-1 Weyl” Fermions
• Space groups 199 and 214 at the P point 

• Symmetries: 

• We seek representations         compatible with  

• Spin-1/2 particles -          rotation must give overall minus 

• 3-dimensional irrep:  

{C�1
3,111|101} {C2x|

1̄

2

1

2
0}

k0 = (⇡,⇡,⇡)

�

�({E|d}) = e�ik0·d

2⇡

14

D. SG 199

We start by considering the P point in SG 199. There are no antiunitary symmetries in Gk0 in this case. A minimal
set of generators for the threefold representation can be chosen to be

G3 ⌘ �({C�1
31 |101}) =

0

B@
0 0 1

1 0 0

0 1 0

1

CA , G1 ⌘ �({C2x

| 1̄
2

1

2
0}) =

0

B@
�1 0 0

0 �1 0

0 0 1

1

CA . (66)

Note that G2 = {C2y

|0 1
2

1̄
2} from Section I E may be represented as G2 = �(G2) = G�1

3 G1G
�1
3 . It is straightforward

to verify that these matrices satisfy all the requirements Eq. (4) of an irreducible 3d representation. We now write

H199(�k) =
8X

i=0

f
i

(�k)�
i

(67)

and impose Eq. (57) as a constraint on the f
i

. First, we find that G3 and G1 partition the Gell-Mann matrices into
three classes

Q1 = {�1, �4, �6}, Q2 = {��2, �5, ��7}, Q3 = {�0, �3, �8}. (68)

In each of these classes the action of G3 and G1 by conjugation has a three dimensional representation D
i

satisfying,

G3(v · Q
i

)G�1
3 = (D

i

(G3)v) · Q
i

,

G1(v · Q
i

)G�1
1 = (D

i

(G1)v) · Q
i

(69)

for an arbitrary vector v, where

D1(G3) = D2(G3) =

0

B@
0 1 0

0 0 1

1 0 0

1

CA , D1(G1) = D2(G1) =

0

B@
1 0 0

0 �1 0

0 0 �1

1

CA , (70)

D3(G3) =

0
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0 � 1
2 �

p
3

2

0
p

3
2 � 1

2

1

CA , D3(G1) =

0

B@
1 0 0

0 1 0

0 0 1

1

CA . (71)

We may now impose the constraints of symmetry in each class Q
i

separately. For class Q1 we find

f1(�kx

, �k
y

, �k
z

) = f4(�ky

, �k
z

, �k
x

) = f1(�kx

, ��k
y

, ��k
z

), (72)

f4(�kx

, �k
y

, �k
z

) = f6(�ky

, �k
z

, �k
x

) = �f4(�kx

, ��k
y

, ��k
z

), (73)

f6(�kx

, �k
y

, �k
z

) = f1(�ky

, �k
z

, �k
x

) = �f6(�kx

, ��k
y

, ��k
z

). (74)

These equations can be solved to any desired order in �k. To linear order, we easily find

f1 = a1�kx

, f4 = a1�kz

, f6 = a1�ky

. (75)

Carrying out this same procedure for classes Q2 and Q3, we find that to linear order:

H199 = E0�0 +

0

B@
0 a�k

x

a⇤�k
y

a⇤�k
x

0 a�k
z

a�k
y

a⇤�k
z

0

1

CA , (76)

where a = a1 + ia2 is a complex parameter, and E0 sets the zero of energy, which we now set to zero without loss of
generality. For generic values of the parameter a, this Hamiltonian is fully gapped for all �k 6= 0. To see this, we look
at the characteristic polynomial

p199 = det (H199 � ✏�0) = 2Re(a3)�k
x

�k
y

�k
z

+ |a|2|�k|2✏ � ✏3. (77)
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“Spin-1 Weyl” Fermions
• Linearized Hamiltonian 

• Topological properties: 

• Nontrivial Berry curvature           ,      

• (c.f.                            ) 
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Consequences - Surface 
Fermi Arcs

• Numerical check: tight-binding 
model for SG 214 

• 4 atoms/unit cell, 3 p-orbitals 
per atom, 2NN hoppings 

• Slab geometry, compute surface 
spectral function
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Consequences - Landau 
Levels

• Introduce magnetic field 

• Landau level creation/annihilation operators  

• Linear Hamiltonian  

• Exactly solvable when 

k
x,y

! ⇧
x,y

⌘ k
x,y

+ eA
x,y

18

where we have introduced a
1

= |a| cos� and a
2

= |a| sin�. Because the set {�
1

,�
2

�
3

,�
8

} satisfy the same commutation
algebra as {�

1

,�
2

,�
3

,�
0

}, we can trivially diagonalize the Hamiltonian along this axis, obtaining energies

E± =
1p
3
Bg

0

±
q

(Bg
1

+ a
1

k)2 + (Bg
2

+ a
2

k)2 + B2g2

3

, E
0

= � 2p
3
g
0

B (S98)

There are two distinct parameter regions of interest. Let us define

g⇤ =
1

|B| inf
k

(E
+

� E�) =

s

g2

3

+
(a

2

g
1

� a
1

g
2

)2

|a|2 (S99)

When g⇤ < |p3g
0

|, there are two Weyl points on the [100] axis, occurring between the E
0

band and either the E
+

or E� bands. Because the E
0

band is identically flat on this axis, these Weyls are at the transition between type-I
and type-II; the inclusion of higher order terms will shift them into either of these two phases. Additionally, Chern
number counting and symmetry requires that there exist two additional Weyl points between the E

+

and E� bands,
that occur o↵ of the high symmetry axis.

As g⇤ increases towards |p3g
0

|, the two Weyl points on the [100] axis move together, until they coalesce in a double
Weyl point at exact equality. For g⇤ > |p3g

0

|, this double Weyl splits again into two single Weyl points, which move
away from the [100] axis. Hence in this parameter range, all four Weyl points exist away from the high-symmetry
axis.

2. Magnetic field – Landau levels for SG 199

Here, we consider adding an orbital magnetic field, B = Bẑ, to the Hamiltonian (S76) for SG 199. We make
the canonical substitution k

x,y

! ⇧
x,y

⌘ k
x,y

+ eA
x,y

, where [⇧
x

, ⇧
y

] = �iB, and define the raising and lowering
operators:

a =
1p
2B

(⇧
x

� i⇧
y

) , a† =
1p
2B

(⇧
x

+ i⇧
y

) (S100)

which obey
⇥
a, a†⇤ = 1. The Hamiltonian then takes the form,

H(B, k
z

) =

r
B

2

0
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0 ei�(a + a†) ie�i�(a � a†)

e�i�(a + a†) 0 ei�k̄
z

iei�(a � a†) e�i�k̄
z

0

1

CA (S101)

where k̄
z

⌘ k
z

/
p

B/2.

An eigenstate,  , of H(B, k
z

), with energy E
p

B/2, can be written as a linear combination:
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Using a|ni =
p

n|ni, a†|ni =
p

n + 1|n + 1i, H = E yields three equalities that hold for all n � 0:
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Combining equations (S104) and (S105),
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Substituting into Eq (S103) yields an equation only in terms of the a
n

, which must hold for all n � 0:

a
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Consequences - Landau 
Levels (Exact)



Consequences - Landau 
Levels (Higher order)
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3-fold Degeneracy with 
Line Nodes

• Space group 220 at the P point 

• Symmetries 

• Linearized Hamiltonian 

• Spin-1 Weyl at a phase transition 
- protected line nodes
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“Spin-1 Dirac” Fermions
• Space groups 206 and 230 at 

the P point 

• Same symmetries as the spin-1 
Weyl, but now also respects 

• Two superimposed copies of a 
spin-1 Weyl  

• No protected surface states (a la 
Dirac nodes at high symmetry 
points)
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“Double Spin-1”
• Space groups 198, 212, 213 

• Primitive cubic version of 
199 - TR pairs two spin-1 
Weyls 

• No mirrors - these both 
have the same monopole 
charge 

• c.f. Chang et al., arXiv: 
1706.04600
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Eightfold Degeneracy - 
Dirac Lines

• SG 130 and 135 at the A point 

• Only one allowed representation 
of the symmetry group - 8-fold 
degeneracy required 

• Can appear as an isolated feature 
at the Fermi level 

• Mirror symmetry along BZ edges 
-> fourfold Dirac line nodes 

• Zeeman splitting / Strain splitting 
-> Dirac, Weyl, and line-node 
semimetals, strong/weak TIs

4

(a) SG 205 (b) SGs 206 and 230 (c) SGs 198, 212 and 213

FIG. 2. Energy dispersion near a six-fold degeneracy in (a) SG 205, (b) SG 206 and 230, and (c) SGs 198, 212, and 213. In
SGs 198, 212, and 213 bands become degenerate in pairs along the faces �k

i

= 0 of the BZ. In SGs 205, 206 and 230, all bands
are two-fold degenerate due to inversion symmetry.

(a) SGs 130 and 135 (b) SGs 222, 223 and 230 (c) SGs 218 and 220

FIG. 3. Energy dispersion near an eight-fold degeneracy in (a) SGs 130 and 135, (b) SGs 222, 223 and 230, and (c) SGs 218
and 220. (a) and (b) show pairwise degeneracy due to inversion symmetry. In addition, in (a), two degenerate bands form
four-fold degenerate line nodes along the edges of the BZ. In (c) the eight-fold degeneracy splits into four non-degenerate and
two doubly degenerate pairs of bands along the high symmetry |�k

x

| = |�k
y

| = |�k
z

| lines.

�k
i

= �k
j

= 0 with i 6= j; i, j 2 {x, y, z} which follow
the BZ edges, as shown in Fig. 3a. This is seen by noting
that the matrices multiplying any given �k

i

are part of a
Cli↵ord algebra. These lines are generally protected by
composites of time reversal and non-symmorphic mirror
symmetry. Due to T I symmetry, the U(1) holonomy of
these line nodes vanishes. However, they can be charac-
terized by the two (�1) eigenvalues of the SU(2) Wilson
loop encircling them.

A similar story holds for SGs 222, 223 and 230, with

H222 = H223 = �k
z

(a�3�1�3 + b�1�1�1 + c�1�1�2)

� �k
x

(
a

2
�1�1�3 +

a
p
3

2
�1�2�0 + b�3�1�1 + c�3�1�2)

+ �k
y

(
a

2
�2�1�0 �

a
p
3

2
�2�2�3 + b�0�1�2 � c�0�1�1),

(8)

and a similar expression for H230 after a permutation of
the �k’s. Besides the T I double degeneracy of all bands,
there are no additional degeneracies, as shown in Fig. 3b.

Finally, we examine the 8-fold degeneracy in SGs 218
and 220. Because both of these cases lack T I, they
have eight non-degenerate bands away from the high-
symmetry point. However, there is a degeneracy along
high-symmetry lines emanating from it. Along lines
|�k

x

| = |�k
y

| = |�k
z

|, the 8-fold degeneracy splits into
four singly degenerate bands and two pairs of doubly de-
generate bands. In addition, along lines where two of the
�k

i

are zero, and along lines where �k
i

= �k
j

, �k
k

= 0,

there are four pairs of doubly degenerate bands. Unlike
SGs 198, 212 and 213 above, however, there are no ad-
ditional degeneracies along high-symmetry planes. The
spectrum is shown in Fig. 3c. The k · p Hamiltonian is
unenlightening, but is given in the Supp. Mat.
Experimental signatures We now consider how to ex-

perimentally detect the topological character of the new
fermions. We focus on the 3�fold degeneracy in SGs 199
and 214. Because the degeneracy at the P point carries
net Berry flux |⌫| = 2, the surface spectrum should host
two Fermi arcs that emerge from the surface projection of
the P point[8], identical to those that appear from double
Weyl points[31]. In the presence of TR, a partner 3�fold
degeneracy exists at the �P point, whose surface projec-
tion will be the origin for two more Fermi arcs. These
four Fermi arcs must terminate on the surface projection
of four Weyl points (or two double Weyl points), which
must exist elsewhere in the BZ. To verify this, we con-
structed a toy tight-binding model for SG 214, with 4
atoms per unit cell, and three p orbitals from each atom
(inset Fig. 4). Fig. 4 shows the surface density of states
for a surface in the 1̄11 direction in the first surface BZ.
Two pairs of Fermi arcs are clearly visible, emanating
from the surface projections of the P and �P points.
Breaking time-reversal symmetry can split the degener-
acy between the Fermi arcs at the P and �P point in
SG 199, but not in SG 214, where a C2 rotation relates
these points.
In addition to Fermi arc surface states, the threefold

fermions will exhibit anomalous negative magnetoresis-

k
x

ky

kz

�

Z

RA

M
X

⇤

⌃

Y

�

W
V

T

S U



Full Classification: Surface/Line 
Degeneracies
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(a) Line Nodes in SG 220
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(c) Dirac line nodes in SGs 130 and 135

k
x

k
y

k
z

�

R

M

X
T

S
�

�
x̄y �

xz̄

(d) Line nodes in SG 218

FIG. 3. Highlighted are the line and surface degeneracies in (a) SG 220, (b) SG 198,212, and 213, (c) SGs 130 and 135, and
(d) SG 218. We have indicated the mirror symmetries which protect the line nodes, as well as the antiunitary symmetries that
protect the Kramers degenerate surface nodes.

one of them, without loss of generality. Using the notation of Eq. (39), we can take as our generating set the matrices

G1 = �(G1) =

 
P4 0

0 P ⇤
4

!
, (159)

G3 = �(G3) =

0

BBB@

�0 0 0 0

0 ��0 0 0

0 0 �0 0

0 0 0 ��0

1

CCCA
, (160)

G4 = �(G4) =

 
R4 0

0 R⇤
4

!
, (161)

T =

 
0 ��0 ⌦ �0

�0 ⌦ �0 0

!
K, (162)
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I. SYMMETRY ANALYSIS OF 3D AND 6D IRREPS

A. Notation

A Bravais lattice in three dimensions has three basis vectors, indicated by t
i

, i = 1, 2, 3. Reciprocal space lattice
vectors are indicated by g

i

, where g
i

· t
j

= 2⇡�
ij

. The new fermions described in the main text occur only in the
primitive cubic, body-centered cubic, and primitive tetragonal lattices; their lattice and reciprocal lattice vectors are
shown in Table I. Diagrams of the first Brillouin zone for each of these Bravais lattices are shown in Figure 1, with
high symmetry points labelled.

We indicate non-symmorphic symmetry operations using Seitz notation, i.e., a point group operation O followed
by a translation v = v

i

t
i

is indicated by {O|v} or, component-wise, {O|v1v2v3}. The rules for combining operations
is as follows:

{O2|v2}{O1|v1} = {O2O1|v2 + R2v1}. (1)

We thus have the following useful relations:

{O|v}�1 = {O�1| � O�1v}, (2)

{O|v} = {E|v}{O|0} = {O|0}{E|O�1v}. (3)

We will always use E for the identity operator and I for inversion. We frequently use R to indicate a 2⇡ rotation; since
we are interested in spin-1/2 particles, this operator is always represented by �I. We use C2x

, C2y

, C2z

to indicate
2-fold rotations about the x-, y- or z- hat axes; otherwise, we use C

n,n

x

n

y

n

z

to indicate an n-fold rotation about the
n

x

x̂+n
y

ŷ+n
z

ẑ axis. Similarly, �
x

, �
y

, �
z

indicate mirror operations through the planes perpendicular to the indicated
axis and �

n

x

n

y

n

z

indicates a mirror operation through the plane perpendicular to the n
x

x̂ + n
y

ŷ + n
z

ẑ direction. We
also encounter four-fold roto-inversions; we define S4x

⌘ IC�1
4x

and similarly for y and z. Pure translations are
indicated by {E|t}. Irreducible representation (irrep) of the group of translations are labeled by reciprocal space
vectors; in the irrep labeled by k, an integer translation t ⌘ n

i

t
i

is represented by the phase e�ik·t.
The little group Gk0 of a point k0 in reciprocal space is the set of all space group operations {O|v} such that

Ok0 = k0 + n
i

g
i

, i.e., the set of all space group operations whose ‘symmorphic part’ leaves k invariant up to an
integer reciprocal lattice vector; later we will consider the e↵ect of including time reversal in this definition. If a d-
dimensional irrep exists, a generic Hamiltonian which respects the space group symmetries can display a d-dimensional
degeneracy at k0. However, if multiple irreps with dimensions d1, d2, ... exist, not all will necessarily be realized in
a given material. Furthremore, notice that two-fold degeneracies (Weyl fermions) can exist without protection by a
space group symmetry.

If a d-band crossing exists, and if the Fermi level is near the crossing, then these bands constitute the low-energy
dispersion relation of a fermion with d components. Here we are exploring fermions beyond the Weyl and Dirac
paradigm. These new fermions consist of 3-, 6- and 8-band crossings in the presence of time reversal symmetry; the

Bravais lattice Lattice vectors Reciprocal lattice vectors

Primitive cubic (a, 0, 0), (0, a, 0), (0, 0, a) 2⇡
a

(1, 0, 0), 2⇡
a

(0, 1, 0), 2⇡
a

(0, 0, 1)

Body-centered cubic a

2 (�1, 1, 1), a

2 (1,�1, 1), a

2 (1, 1,�1) 2⇡
a

(0, 1, 1), 2⇡
a

(1, 0, 1), 2⇡
a

(1, 1, 0)

Primitive tetragonal (a, 0, 0), (0, a, 0), (0, 0, c) 2⇡
a

(1, 0, 0), 2⇡
a

(0, 1, 0), 2⇡
c

(0, 0, 1)

TABLE I. Lattice and reciprocal lattice vectors 2

orem. All three of these systems host a complementary
3-fold degeneracy at �P due to TR symmetry. SG 214 is
unique in that the 3-fold degeneracy at �P persists even
if time reversal symmetry is broken, as the P and �P
points are related by a two-fold screw rotation in the full
symmetry group.

In the presence of TR symmetry, six space groups can
host 6-fold degeneracies. In all cases, these arise as 3-
fold degeneracies which are doubled by the presence of
TR symmetry. Four of these – SGs 198, 205, 212, and 213
– correspond to simple-cubic Bravais lattice, and the 6-
fold degeneracy occurs at the TR invariant R point at the
corner of the BZ. The other two 6-fold degeneracies occur
in SGs 206 and 230 at the P point. Although this point
is not TR invariant, these SGs are inversion symmetric,
and hence all degeneracies are doubled.

Finally, we find, in agreement with previous work[26],
that seven SGs may host 8-fold degeneracies. Two of
these, SGs 130 and 135 have a tetragonal Bravais lattice;
these are special in that they require 8-fold degeneracies
at the time-reversal invariant A point. In addition, SGs
222, 223 and 230 may host 8-fold degeneracies. SGs 222
and 223 are simple-cubic, and an 8-fold fermion can occur
at the R point in the BZ; for SG 230, it occurs at the
time-reversal invariant H point.

There are two more SGs that can host 8-fold degenera-
cies, SG 218 and SG 220. These di↵er from the others in
that they lack inversion symmetry. Energy bands away
from high symmetry points need no longer come in pairs.
SG 218 has a simple cubic Bravais lattice, and an 8-fold
degeneracy may occur at the R point. In SG 220 the
degeneracy may occur at the H point.

Low energy e↵ective models For each of the band
crossings in Table I, we compute a low-energy expan-
sion of the most general Hamiltonian consistent with the
symmetries of the little group near the degeneracy point,
k0, in terms of �k ⌘ k � k0. Full details of the con-
structions are in the Supp. Mat. Representative plots of
the band dispersion along high symmetry lines are shown
in Figs. 1–3, where inessential higher-order terms have
been added for the sake of clarity.

We begin by analyzing the threefold degeneracy points.
The k · p Hamiltonian for SG 199 takes the form

H199(�, �k) =

0

B@
0 ei��k

x

e�i��k
y

e�i��k
x

0 ei��k
z

ei��k
y

e�i��k
z

0

1

CA , (1)

where � is a real parameter; without loss of generality
we set the zero of energy at zero throughout and omit
an overall energy scale. The bands are non-degenerate
away from �k = 0, unless � = n⇡/3 for integer n,
in which case bands become degenerate along the lines
|�k

x

| = |�k
y

| = |�k
z

|. While the locations of these de-
generacies in (�k,�) change in the presence of higher or-
der terms, they identify two topologically distinct phases.

SG La k d Generators

198 cP R 6 {C�
3,111|010}, {C2x| 12

3
20}, {C2y|0 3

2
1
2}

199 cI P 3 {C�
3,111|101}, {C2x| 1̄2

1
20}, {C2y|0 1

2
1̄
2}

205 cP R 6 {C�
3,111|010}, {C2x| 12

3
20}, {C2y|0 3

2
1
2}, {I|000}

206 cI P 6 {C�
3,111|101}, {C2x| 1̄2

1
20}, {C2y|0 1

2
1̄
2}

212 cP R 6 {C2x| 12
1
20},{C2y|0 1

2
1
2},{C

�
3,111|000},{C2,11̄0| 14

1
4

1
4}

213 cP R 6 {C2x| 12
1
20},{C2y|0 1

2
1
2},{C

�
3,111|000},{C2,11̄0| 34

3
4

3
4}

214 cI P 3 {C�
3,111|101}, {C2x| 1̄2

1
20}, {C2y|0 1

2
1̄
2}

220 cI P 3 {C3,1̄1̄1|0 1
2

1
2},{C2y|0 1

2
1
2},{C2x| 32

3
20},{IC

�
4x| 1211}

230 cI P 6 {C3,1̄1̄1|0 1
2

1
2},{C2y|0 1

2
1
2},{C2x| 32

3
20},{IC

�
4x| 1211}

130 tP A 8 {C4z|000}, {�x̄y

|00 1
2}, {I|

1
2

1
2

1
2}

135 tP A 8 {C4z| 12
1
2

1
2}, {�x̄y

|00 1
2}, {I|000}

218 cP R 8 {C2x|001}, {C2y|000}, {C�
3,111|001}, {�x̄y

| 12
1
2

1
2}

220 cI H 8 {C2x| 12
1
20}, {C2y|0 1

2
3
2}, {C

�
3,111|001}, {�x̄y

| 12
1
2

1
2}

222 cP R 8 {C�
4z|000}, {C2x|000}, {C�

3,111|010}, {I| 12
1
2

1
2}

223 cP R 8 {C�
4z| 12

1
2

1
2}, {C2x|000}, {C�

3,111|010}, {I|000}
230 cI H 8 {C4z|0 1

20}, {C2y|1 1
2

1
2}, {C3,111|111}, {I|000}

TABLE I. Summary of all new fermion types in solid state
systems. La indicates the type of lattice (cP is cubic primitive,
cI is cubic body-centered, and tP is tetragonal primitive), d
indicates the maximum degeneracy at the relevant k point in
the presence of time reversal symmetry and Rep the label of
the relevant representation(s). Group generators are defined
in the Supplementary Material.

First, for ⇡/3 < � < 2⇡/3, the �k 6= 0 Hamiltonian is
adiabatically connected to the one with � = ⇡/2 for suf-
ficiently small |�k| > 0. The three bands  ±, 0 have
energies ✏± = ±|�k|2, ✏0 = 0. Furthermore, the Chern
numbers of each of these bands over any closed sur-
face enclosing the degeneracy point are ⌫± = ⌥2 and
⌫0 = 0. These Berry fluxes characterize the entire phase
⇡/3 < � < 2⇡/3. At � = n⇡/3, the ⌫ = 0 band be-
comes degenerate with both the bands  ± at di↵erent
points in momentum space; these degeneracies transport
Berry curvature between  + and  �. The properties of
all the phases for the other values of � can be derived
from those for ⇡/3 < � < 2⇡/3 (see Supp. Mat. ) . This
3-fold degenerate fermion thus appears, from a topolog-
ical perspective, as a double – but linearly dispersing –
Weyl fermion with a trivial (⌫ = 0) band passing through
the gapless point. The energy spectrum is pictured in
Fig. 1a.
To linear order in �k, the low energy description of

the 3-fold degeneracy in SG 214 is completely identical
to that of SG 199. The next 3-fold degeneracy is in SG
220. The linear-order k · p reads

H220 = H199(0, (�ky, �kx,��kz)) (2)

Line nodes appear along the lines |�k
x

| = |�k
y

| = |�k
z

|
(Fig. 1b). Mirror and 3-fold rotation symmetry dictate
that these line nodes persist to all orders in the k · p ex-
pansion, as proved in the Supplementary Material. The

For 8-fold see also Wieder et al., PRL 116, 186402 (2016)

Due to nonsymmorphicity, T C2 squares to -1
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Outline
• Review - crystal symmetries, Weyl semimetals 

• Symmetry protected topological metals - beyond Weyl 
and Dirac fermions 

• Outlook - topological band theory 



Band Connectivity
• Why are there so many bands? 

• Momentum space perspective: Non-symmorphic symmetries force bands 
to stick together along high symmetry lines 

• Ex: Glide Symmetry 
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Proof Applying [T̂, U
M̄

x

] = 0,

[M̄
x

T ]
mn

= e�ik̄z

/2
⌦
u

m,�⇡

��
�⇡ 0Y

k

y

P (k
y

)V (�b̃2)UM̄

x

�⇡ 0Y

q

y

P (q
y

)V (2⇡~y � b̃2 � 2k̄
z

~z) T̂
��u

n,�⇡

↵

= e�ik̄z

/2
⌦
u

m,�⇡

��
�⇡ 0Y

k

y

P (k
y

)
0 ⇡Y

q

y

P (q
y

)V (�b̃2) e
ik̄

z V (b̃2 � 2k̄
z

~z) T̂ U
M̄

x

��u
n,�⇡

↵

=
⌦
u

m,�⇡

��
�⇡ 0Y

k

y

P (k
y

)V (2⇡~y � b̃2 � 2k̄
z

~z) T̂ V (2⇡~y)
⇡ �⇡Y

q

y

P (q
y

)
�⇡ 0Y

l

y

P (l
y

) e�ik̄z

/2 V (�b̃2)UM̄

x

��u
n,�⇡

↵

= [T W�⇡

M̄
x

]
mn

= [T M̄
x

W�⇡

]
mn

. (B66)

This confirms our previous claim that T commutes with M̄
x

modulo a Wilson loop, unlike the algebra of ordinary
space-time symmetries. Recalling Eq. (B57),

M̄
x

T ��ei✓,�
x

; k̄
z

↵
= T M̄

x

W�⇡

��ei✓,�
x

; k̄
z

↵
= e�i✓ �⇤

x

T ��ei✓,�
x

; k̄
z

↵
= �eik̄z �

x

T ��ei✓,�
x

; k̄
z

↵
. (B67)

In the last equality, we applied �
x

(✓ + k
z

)2 = �exp[�i(✓ + k
z

)]. ⌅

An analog of this result occurs for the surface bands, where the eigenvalues of M̄
x

are imaginary (real) at k
z

= 0
(resp. ⇡), and time-reversal pairs up complex-conjugate eigenvalues.

Appendix C: Connectivity of bulk Hamiltonian
bands in spin systems with glide and time-reversal

symmetries

Γ Z Γ Z

(a) (b)

+i exp(-ikz/2)

-i exp(-ikz/2)

+1,+1

-1

+i

+i
-i

-i

+exp(-ikz/2)

-exp(-ikz/2)

(c)

Γ Z

  +1
-1,-1

-i
+i

FIG. 14. Bulk bandstructures with glide and time-reversal
symmetries, for systems with spin (a-b) and without (c).
� ⌘ (0, 0, k

z

= 0) and Z ⌘ (0, 0, k
z

= ⇡) are high-symmetry
points that are selected because the fractional translation (in
the glide) is parallel to ~z. (a) either has no spin-orbit cou-
pling, or has spin-orbit coupling with an additional spatial-
inversion symmetry. (b) has spin-orbit coupling but breaks
spatial-inversion symmetry. The crossings between orthogo-
nal mirror branches (indicated by arrows) are movable along
�Z but unremovable so long as glide and time-reversal sym-
metries are preserved. The glide eigenvalues are indicated at
� and Z for one of the two hourglasses. (c) could apply to
an intrinsically spinless system (e.g., bosonic cold atoms and
photonic crystals), and also to an e↵ectively spinless system
(e.g., a single-spin species in an electronic system without
spin-orbit coupling).

In spin systems with minimally time-reversal (T )
and glide-reflection (M̄

x

) symmetries, we prove that
bulk Hamiltonian bands divide into quadruplet sets of
hourglasses, along the momentum circle parametrized
by (0, 0, k

z

). Each quadruplet is connected, in the sense
that there are enough contact points to continuously
travel through all four branches. With the addition of
other spatial symmetries in our space group, we further
describe how degeneracies within each hourglass may be
further enhanced. Our proof of connectivity generalizes
a previous proof62 for integer-spin representations of
nonsymmorphic space groups.

The outline of our proof: we first consider a spin
system with vanishing spin-orbit coupling, such that
it has a spin SU(2) symmetry. In this limit, we prove
that bands divide into doubly-degenerate quadruplets
with a four-fold intersection at (0, 0,⇡), as illustrated in
Fig. 14(a). Then by introducing spin-orbit coupling and
assuming no other spatial symmetries, we show that each
quadruplet splits into a connected hourglass (Fig. 14(b)).

With vanishing spin-orbit coupling, the system is ad-
ditionally symmetric under the spin flip (F

x

) that rotates
spin by ⇡ about ~x. The double group (G) relations in-
clude

T 2 = F 2
x

= Ē, M̄2
x

= Ē t(c~z),

[T, F
x

] = [T, M̄
x

] = [F
x

, M̄
x

] = 0, (C1)

with Ē a 2⇡ rotation and t a lattice translation. It follows
from this relations that we can define two operators that
act like time reversal and glide reflection in a spinless
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come in groups of 4
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• Symmetry contrains the Bloch Hamiltonian  

• Schur’s Lemma:  

• For                        small, 

• Local in momentum space -> Misses 
connectivity and topology                                               
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Bigger Picture
• Global band topology (and geometry!) determines a set 

of Wannier functions for each gapped band 

• Topologically trivial -> these Wannier functions are 
smoothly deformable to atomic orbitals while 
preserving symmetries 6

FIG. 4. (Color online) Sum of the weights of the projections
into the two occupied bands of the basis states |A; ↑z⟩, |B; ↑z⟩,
|A; ↓z⟩, and |B; ↓z⟩ plotted along the diagonal of the BZ for (a)
λv/t = 5 (Z2-even phase) and (b) λv/t = 1 (Z2-odd phase).
Inset in (a): BZ of a honeycomb lattice.

The two occupied Bloch bands may be written as

|ψnk⟩ =
∑

ℓ

Cℓnk|χℓk⟩ (20)

where ℓ is a combined index for sublattice and spin, ℓ =
{1, 2, 3, 4} ≡ {A ↑, B ↑, A ↓, B ↓}, and χℓk = χjσk are the
tight-binding basis functions of Eq. (10). With Eq. (19)
the projected functions become

|Υ1k⟩ = C∗
21k|ψ1k⟩+ C∗

22k|ψ2k⟩, (21)

|Υ2k⟩ = C∗
41k|ψ1k⟩+ C∗

42k|ψ2k⟩. (22)

The overlap matrix S is constructed from these functions,
and for the determinant one finds

det [S(k)] = (|C21k|2 + |C22k|2)(|C41k|2 + |C42k|2)
− |C21kC

∗
41k + C22kC

∗
42k|2. (23)

Recall that for the Löwdin orthonormalization procedure
to succeed, this determinant must remain non-zero ev-
erywhere in the BZ. This is indeed the case for the Z2-
even phase, as illustrated in Fig. 5(a), where the solid
black curve shows the dependence of the determinant on
k along the high-symmetry line in the BZ.
In contrast, the dashed red curve in Fig. 5(a) shows

the behavior of det [S(k)] in the Z2-odd regime. The de-
terminant can be seen to vanish at the K and K ′ points
in the BZ. Clearly, this choice of trial functions is not ap-
propriate for building the Wannier representation in the
Z2-odd phase. Indeed, as we shall see in the next subsec-
tion, any choice of trial functions that come in Kramers
pairs is guaranteed to fail in the Z2-odd case. There we
shall also investigate alternative choices of trial functions
that allow for a successful construction of WFs.

FIG. 5. (Color online) Plot of det[S(k)] along the diagonal of
the BZ for λv/t = 5 (Z2-even phase) and λv/t = 1 (Z2-odd
phase). (a) Trial functions are |B; ↑z⟩ and |B; ↓z⟩. (b) Trial
functions are |A; ↑x⟩ and |B; ↓x⟩.

C. Z2-odd phase

To gain some insight into the appropriate choice of trial
functions in the Z2-odd regime, consider the weights of
the basis functions in the occupied space shown for this
case in Fig. 4(b). Unlike the normal insulator, the Z2-odd
phase does not favor any particular basis states. Instead,
different basis states dominate in different portions of the
BZ. For example, at points K and K ′ the occupied space
is represented by only two of the four basis states; at each
of these points the two participating basis states have
opposite spin and sublattice indices, and none appear
in common at both points. (The states at K are, of
course, Kramers pairs of those at K ′.) It follows that
if any of the trial states is simply set equal to one of
the four basis states, then at least one of the |Υ⟩ would
vanish either at K or K ′, and the determinant would
vanish there too. This explains the failure of the naive
Wannier construction procedure for the Z2-odd phase;
with the naive choice of trial functions as in Eq. (18), the
determinant vanishes at both K and K ′, as shown by the
red dashed curve in Fig. 5(a).31

In fact, this failure can be understood from a general
point of view. If the two trial functions form a Kramers
pair, then the projection procedure of Eqs. (14-16) will
result in Bloch-like functions obeying

|ψ̃1(−k)⟩ = θ|ψ̃2(k)⟩,
|ψ̃2(−k)⟩ = −θ|ψ̃1(k)⟩. (24)

The WFs obtained from Eq. (17) will then also form a
Kramers pair. But Eq. (24) is nothing other than the
constraint of Eq. (5) defining a gauge that respects time-
reversal symmetry, and it has been shown23,32,33 that an
odd value of the Z2 invariant presents an obstruction
against constructing such a gauge. In other words, in

Ex: Graphene 
[Soluyanov & Vanderbilt (2011)]



Bigger Picture
• By combining representation theory with band 

topology, we have applied this logic to all 230 space 
groups.  

• Predictive classification of non-interacting TCIs 

• See next talk for more details 


